Органическая химия

Материал из свободной русской энциклопедии «Традиция»
Перейти к навигации Перейти к поиску
Логотип «Викисловаря»
В Викисловаре есть страница о термине «органическая химия»

Органи́ческая хи́мия — раздел химии, изучающий структуру, свойства органических соединений и реакции между ними.

Понятие органической химии включает следующие цели, экспериментальные методы и теоретические представления:

  • Выделение чистых веществ из растительного, животного или ископаемого сырья
  • Синтез и очистка соединений
  • Определение структуры веществ
  • Определение механизмов химических реакций
  • Выявление связей между структурой органических веществ и их свойствами

История[править | править код]

Способы получения различных органических веществ были известны еще с древности. Египтяне и римляне использовали красители индиго и ализарин, содержащиеся в растительных веществах. Многие народы знали секреты производства спиртных напитков и уксуса из сахар- и крахмалсодержащего сырья.

Во времена средневековья к этим знаниям ничего не прибавилось, некоторый прогресс начался только в 16-17 в: были получены некоторые продукты, в основном путем перегонки некоторых растительных продуктов. В 1769—1785 г. Шееле выделил несколько органических кислот, таких как яблочная, винная, лимонная, галловая, молочная и щавелевая. В 1773 г. Руэль выделил из человеческой мочи мочевину.

Выделенные из животного или растительного сырья продукты имели между собой много общего, но отличались от неорганических соединений. Так возник термин «Органическая химия» — раздел химии, изучающий вещества, выделенные из организмов (определение Берцелиуса, 1807 г.). При этом полагали, что эти вещества могут быть получены только в живых организмах благодаря «жизненной силе».

Как принято считать, органическая химия как наука появилась в 1828 году когда Фридрих Вёлер впервые получил органическое вещество — мочевину — в результате упаривания водного раствора цианата аммония (NH4OCN).

Важным открытием стала разработка Купером, Кекуле и Бутлеровым теории строения органических соединений в 1860 г. В основе этой теории стоял факт, что практически во всех соединениях углерод является четырехвалентным. В 1865 году Кекуле предложил структурную формулу бензола, что стало одним из важнейших открытий в органической химии. В 1875 г. Вант-Гофф и Ле Бель предложили тетраэдрическую модель атома углерода, по которой валентности углерода направлены к вершинам тетраэдра, если атом углерода поместить в центр этого тетраэдра. В 1917 году Льюис предложил рассматривать химическую связь с помощью электронных пар.

В 1931 г. Хюккель применил квантовую теорию для объяснения свойств ароматических углеродов, чем основал новое направление в органической химии — квантовую химию. В 1933 г. Ингольд провел изучение кинетики реакции замещения у насыщенного атома углерода, что привело к масштабному изучению кинетики большинства органических реакций.

Историю органической химии принято излагать в связи с открытиями сделанными в области строения органических соединений, однако такое изложение гораздо больше связано с историей химии вообще. Гораздо интереснее рассматривать историю органической химии с позиции материальной базы, т. е. собственно предмета изучения органической химии.

На заре органической химии предметом изучения были преимущественно субстанции биологического происхождения. Именно этому факту органическая химия обязана своим названием. Научно-технический прогресс не стоял на месте, и со временем основной материальной базой органической химии стала каменноугольная смола, выделяемая при получении кокса прокаливанием каменного угля. Именно на основе переработки каменноугольной смолы в конце 19 века возник основной органический синтез. В 50-60 годах прошлого века произошел переход основного органического синтеза на новую базу — нефть. Таким образом появилась новая область химии — нефтехимия. Огромный потенциал, который был заложен в новом сырье вызвал бум в органичсекой химии и химии вообще. Появление и интенсивное развитие такой области как химии полимеров обязана прежде всего новой сырьевой базе.

Несмотря на то, что современная органическая химия в качестве материальной базы по прежнему использует сырье биологического происхождения и каменноугольную смолу, объем переработки этих видов химического сырья по сравнению с переработкой нефти мал. Смена материально-сырьевой базы органической химии была вызвана прежде всего возможностями наращивания объемов производства.

Классификация органических соединений[править | править код]

Подробно рассмотрена в статье «Органические соединения».

Правила и особенности классификации[править | править код]

В основе классификации лежит структура органических соединений. Основа описания структуры — структурная формула. Атомы элементов обозначаются латинскими символами, как они обозначены в периодической таблице химических элементов (таблице Менделеева). Ковалентные связи обозначаются прямой чертой, количество связей характеризуется валентностью элементов. Водородные и электронодефицитные связи обозначаются пунктирной линией, ионные связи обозначаются указанием зарядов частиц, входящих в состав молекулы. Поскольку в подавляющее большинство органических молекул входит водород, его обычно не обозначают при изображении структуры. Таким образом, если в структуре у одного из атомов изображена недостаточная валентность, значит, возле этого атома расположен один или несколько атомов водорода.

Атомы могут образовывать циклические и ароматические системы.

Основные классы органических соединений[править | править код]

  • Углеводороды — соединения, состоящие только из атомов углерода и водорода. Они в свою очередь делятся на:
    • Насыщенные — максимальное количество атомов водорода на один атом углерода.
    • Ненасыщенные — имеют в своем составе хотя бы одну двойную связь.
    • С открытой цепью
    • С замкнутой цепью — содержат цикл

К ним относятся алканы, алкены, алкины, циклоалканы, арены.

  • Гетероциклические — содержат гетероатомы в составе кольца. Различаются по числу атомов в цикле, по виду гетероатома, по количеству гетероатомов в цикле.
  • Органического происхождения — как правило соединения очень сложной структуры, зачастую принадлежат сразу к нескольким классам органических веществ, часто полимеры. Из-за этого их сложно классифицировать и их выделяют в отдельный класс веществ.
  • Полимеры — вещества очень большой молекулярной массы, которые состоят из периодически повторяющихся фрагментов — мономеров.

Строение органических соединений[править | править код]

Органические соединения в основном образованы ковалентными неполярными связями C—C, или ковалентными полярными типа C—O, C—N, C—Hal. Согласно октетной теории Льюиса и Косселя молекула является устойчивой, если внешние орбитали всех атомов полностью заполнены. Для таких элементов как C, N, O, Галогены необходимо 8 электронов, чтобы заполнить внешние валентные орбитали, для водорода необходимо только 2 электрона. Полярность объясняется смещением электронной плотности в сторону более электроотрицательного атома.

Классическая теория валентных связей не в состоянии объяснить все типы связей, существующие в органических соединениях, поэтому современная теория использует методы молекулярных орбиталей и квантовохимические методы.

Особенности органических реакций[править | править код]

В неорганических реакциях обычно участвуют ионы, они проходят быстро и до конца при комнатной температуре. В органических реакциях часто происходят разрывы ковалентных связей с образованием новых. Эти процессы требуют большей температуры и длительного времени. Часто они требуют наличия катализатора. Обычно протекает не одна, а сразу несколько реакций, поэтому выход целевого вещества зачастую не превышает 50 %. Поэтому при изображении органических реакций используют не уравнения, а схемы без расчета стехиометрии.

Реакции могут протекать очень сложным образом и в несколько стадий, не обязательно так, как реакция условно изображена на схеме. В качестве промежуточных соединений могут возникать карбкатионы R+, карбанионы R, радикалы R·, карбены CX2, катион-радикалы, анион-радикалы, и другие нестабильные частицы, живущие доли секунды. Подробное описание всех превращений, происходящих на молекулярном уровне во время реакции, называется механизмом реакции.

Реакции классифицируются в зависимости от способов разрыва и образования связей, способов возбуждения реакции, ее молекулярности.

Определение структуры органических соединений[править | править код]

За все время существования органической химии как науки важной задачей было определить структуру органических соединений. Это значит узнать, какие атомы входят в состав соединения и в каком порядке эти атомы связаны между собой.

Существует несколько методов решения этой задачи.

  • Элементный анализ. Заключается в том, что вещество разлагается на более простые молекулы, по количеству которых можно определить количество атомов, входящее в состав соединения. С помощью этого метода невозможно установить порядок связей между атомами. Часто используется лишь для подтверждения предположенной структуры.
  • Инфракрасная спектроскопия (ИК-спектроскопия). Образец материала (должен быть прозрачным) просвечивается светом инфракрасного диапазона. Этот свет поглощается валентными электронами соединения и возбуждает их. Позволяет установить наличие определенных функциональных групп в молекуле. Часто используется для того чтобы подтвердить идентичность исследуемого вещества с некоторым уже известным веществом путем сравнения ИК-спектров.
  • Метод ядерного магнитного резонанса (ЯМР). Основан на взаимодействии магнитного поля валентных электронов с внешним магнитным полем. Один из главных методов, который может быть использован для определения структуры. Дает информацию о расположении атомов с нечетной атомной массой. К этому методу относится:

В трех последних методах используются неосновные изотопы элементов, поскольку основной изотоп этих элементов имеет четную атомную массу.

  • Методы аналитической химии. Позволяют определить наличие некоторых функциональных групп по специфическим химическим реакциям, факт протекания которых можно фиксировать визуально или с помощью других методов.

Описанных выше методов как правило полностью хватает для определения структуры неизвестного вещества.

Масс-спектроскопия. Вещество при определенных условиях (электрический разряд, химическая ионизация и др.) разлагают на ионы, ускоряемые затем в магнитном или электрическом поле. Позволяет определить молекулярный вес и иногда позволяет установить наличие различных функциональных групп. Метод ядерного магнитного резонанса (ЯМР). Основан на взаимодействии магнитного поля атомных ядер с внешним магнитным полем. Один из главных методов, который может быть использован для определения структуры. Дает информацию о расположении атомов с нечетной атомной массой. К этому методу относится:

Метод протонного магнитного резонанса (ПМР). Позволяет определить положение атомов водорода 1H в молекуле. Метод магнитного резонанса атомов 19F. Определяет наличие и положение атомов фтора в молекуле. Метод магнитного резонанса атомов 31P. Определяет наличие и положение атомов фосфора в молекуле. В двух последних методах используются неосновные изотопы элементов, поскольку основной изотоп этих элементов имеет четную атомную массу. Метод ультрафиолетовой спектроскопии (УФ-спектроскопия). Используется для определения наличия и характеристик коньюгированных &pi-систем. Методы аналитической химии. Позволяют определить наличие некоторых функциональных групп по специфическим химическим реакциям, факт протекания которых можно фиксировать визуально или с помощью других методов. Рентгеноструктурный анализ. Описанных выше методов

Литература[править | править код]

  • Гауптман З., Грефе Ю., Ремане Х., «Органическая химия», Москва, «Химия», 1979.
  • Марч Дж., «Органическая химия: реакции, механизмы и структура», в 4-х томах, Москва, «Мир», 1987.
  • Кери Ф., Сандберг Р., «Углубленный курс органической химии», в 2-х томах, Москва, «Химия», 1981.
  • Химическая энциклопедия, п. ред. Кнунянц, т.3, Москва, «Большая Российская Энциклопедия», 1992.

Ссылки[править | править код]

Органическая химия

Ароматичность  • Ковалентная связь  • Функциональная группа  • Номенклатура ИЮПАК  • Органическое соединение  • Органическая реакция  • Органический синтез  • Список публикаций по органической химии  • Спектроскопия  • флюоренаноскопия  • Стереохимия

Список органических соединений